
+- 1 , - c / 6 3

ANALYZING T H E T E S T PROCESS USING STRUCTURAL COVERAGE

James Ramsey
Victor R. Basili

University of Maryland
Department of Computer Science

College Park. Maryland, 20742. USA
(301) 4542002

Abstract

A large, commercially developed FORTRAN program was
modiiled t o produce structural coverage metrics. The modifled
program was executed on a set of functionally generated
acceptance tests and a large sample of operational usage cases.
The resulting structural coverage metrics are combined with
fauit and error d a t a to evaiuate structurai coverage in the SEL
environmen t.
We can show t h a t in this environment the functionally gen-
erated tests seem to be a good approximation of operational
use. The relative proportions of the exercised statement sub-
classes (executable, assignment, CALL, DO, IF, READ,
WRITE) changes as the structural coverage of the program
increases. We also propose a method for evaluating if two sets
of input data exercise a program in a similar manner.
We also provide evidence that implies tha t in this environ-
ment, faults revealed in a procedure are independent of the
number of times the procedure is executed and that i t may be
reasonable to use procedure coverage in software models tha t
use statement coverage. Finally, the evidence suggests that it
may be possible to use structural coverage to aid in the
management of the acceptance test process.

Introduction
The goal of this study has been to understand and

improve the acceptance test process in the NASA Goddard
Space Flight Center, Software Engineering Laboratory (SEL)
environment . Towards this end. a SEL program has been
modifled t o produce structural coverage metrics. The instru-
mented program, the MAL language preprocessor, is a subset
of the RADMAS satellite attitude maintenance system. It has
68 functions and subroutines, 10k source lines of code and 4k
executable statements. The program was modifled to measure
both procedure coverage and statement coverage. Coverage is
also computed for the following statement subclasses: assign-
ment statements, CALL, DO, IF, READ, and WRITE.

The modifled program was executed on a set of seventeen
functionally generated acceptance tests and on sixty samples of
actual operational inputs . Error, fault and failure data*

1

2

were collected from the system test through operation phases
’. Each execution of an acceptance test or an operational
usage case provides a structural coverage statistic. These
structural coverage statistics are Brst examined individually to
understand the static properties of the acceptance test process.
Randomly generated sequences of acceptance tests and opera-
tional usage cases are then used to explore the dynamic pro-
perties of structural growth (the increase in total structural
coverage as the program is executed with different inputs).
Finally the coverage da ta are combined with the error, fault
and failure d a t a to understand how faults are revealed.

Goab of the Study
-

coverage in the SEL environment. (see Figure 1). T h e flrst
three questions address the simple, static properties of struc-
tural coverage for the different kinds of inputs. The anal ques-
tion addresses the properties of structural coverage growth of
a set of input cases.

models
exercise a program in a similar fashion. This motivated g o d
I 1 “Can different input sets be differentiated using structural
coverage metrics?” Questions 1I.A-1I.D explore several methods
of doing this.

the program yet some faults are still revealed in bperation.
What classes of faults does functional testing miss? Does
operational use exercise the code diaerently than the func-
tional tests? How is this related to structural coverage? This
motivated the next goal: “How are faults and structural cover
age related?” Questions II1.A - 1II.D analyze the SEL error
fault, and failure da ta with respect to structural coverage .

improved method of managing acceptance tests.

. The B r s t goal or this study was to characterize structural

Some testing strategies ’’ and software reliability
require a method for showing that two sets of inputs

The purpose of the functional tests is to reveal faults in

4

In the anal section these ideas are combined to suggest an

This study is funded by NASA grant NSG-5123.

* We have cried to follow the IEEE Standard Glossary of
Software Engineering Terminology deflnitlons of error, fault and
failure: An error is the “human action that results in software con-
taining a fault.” A fault is “a manifestation of an error.” A failure is

3 ‘*a departure of program operation from program requiremenU” .
Some of the sources we cite were written before the standard; their
use of e r r o r may difIer from the standard.

3-47

I. Characterize structural coverage in the SEL environment.

IA. What is the statement coverage of functional testing?
What is the procedure coverage of functional testing?

I.B. What is the statement coverage or operational use? What
is che procedure coverage of operational use?

1.c. \Vhat is the intersection / union of functional testing and
operational use?

I.D. What are the propercies of structural coverage growth?

E. Differentiate different input sew using their structural coverage.

E.A. Are heavily exercised procedures more llkely to contain a
fault?

II.B. Can they be dIYTerentiated using Venn diagrams?

E.C. Can they be diflerentiated uslng nonparametric statlstiu?

E.D. Can they be dlderentiated using the number of execu-
tions of prime sections of code?

m. Relate erron. faults. fallurn and s t ~ ~ t u r a l coverage.

m.A. An more heavtly exercised procedures more likely to
concaln a revealed fault?

m.B. Is procedure coverage related to ttme to isolate!

m.c. h procedure coverage related to time to undentand and
implement?

m.D. Is procedure coverage related rn type of error?

W. Use structurst covemge to aid in the management of acceptance
tests.

W.A. Can s t ~ ~ t u r a l coverage be used to suggest new acceg
tance tests?

W.B. Can structural coverage be used to improve reliability
models?

I
Goal / Question Hierarchy

Figure 1.

Data and Analysis

analysis paralleling the outline in flgure 1.
This section contains a description of the da ta and their

Structural Coverage in the SEL
Question:

What is the statement coverage of functional testing?
What is the procedure coverage of functional testing?
The acceptance tests used were functional or “black box”

tests ’. Since exhaustive sampling of the input subdomains
is impractical. the testers chose a few sample inputs that they
felt were likely to reveal faults from the subdomains ’. There
are 17 acceptance tests.

Table I shows the structural coverage of the acceptance
tests. Test 1 exercised 33 o u t of 68 possible procedures. It
exercised 1069 of the 4300 executable statements. In total, the
17 tests exercised 51 procedures and 2408 executable state-
ments (Union). There were 778 executable Statements that
were exercised by every test case (Intersection).

Sraremenc Coverage
or the MAL Preproecaor

by 17 Benehmuk Test Cws.

CJac

I

3
4
,
6

8
0
10

I1
I2
I 3
14
15

I6
I7

Unmn
I n c e m c

Maximum

Prou
33
30
33
30
33

37
30
36
30 *
46
38
io
4s
45

45
45

S I
?o

68

-

-

Exec
1060
013

1067
032

1040

1304
91%

1228
01%

1877

1786
I285
1448
1675
LO50

1764
1728

2408
778

-

.13u)

. u i m

530
446
520
456
510

632
455
6-22
455
821

8.55
640
601
810
957

861
840

1167
389

1870

-

-

78
M
78
84
7:

1 IO
84

101
84

161

116
101
1 66
I 60
209

177
171

286
42

41s -

52
37
52
30
5 1

62
30
61
30
71

76
sa
57
70
85

73
71

108
3.5

157 -

Reads -
?46
203
?46
m
24 I

288
?os
278
?011
36.9

375
285
324
367
414

383
370

400
188

7.53 -

6
6
8
6
6

11
6
6
6

I 1

9
0
7
0

13

I2
12

14
6

34 -

Writes -
13
10
13
11
12

22
IO
14
I O
21

16
20
12
km
25

24
24

30
IO

?w -

Please note that we did not measure the structural cover-
age of either system or unit tests. Statements which were not
exercised during acceptance test might have been exercised
during previous testing. Structural coverage measures were
not available during either system or unit test. Procedures
were not tested with the goal of achieving high structural cov-
erage.
Question:

What is the statement coverage of operational use?
What is the procedure coverage of operational use?
We obtained 60 samples of actual operational inputs tha t

we claim are representative of SEL operational usage. This is
signiflcantly different from other deflnitions of operational
usage where the input domain is typically divided into sub-
domains, with each subdomain being assigned a probability of
execution. In u t cases are then chosen using the probabilities
of execution 11’ and ‘. Our de5nition of operational usage
lacks both the definition of subdomains and the assignment of
probabilities. These probabilities are diflicult to compute and
verify. Rigorously derived or otherwise, these operational
usage cases deflne how the program was exercised.
Question:

What is the intersection / union of functional testing and
operational use?
Table 2 compares the structural coverage of functionally

generated acceptance tests and operational usage. Together
they exercised 55 procedures and and 2768 executable state-
ments. Their intersection (the statements exercised by both
sets of inputs) contains 51 procedures and ’7397 executable
statements. There are 360 executable statements tha t are
exercised by operational usage but not by acceptance test:
T h e r e nre 11 eueciifnhlr ?r,nt,ernenrs rhn t nrp pyrr r ispr f hv

3-48

acceptance test but not by operational usage.

.*cvt
U S W C

Union
l n c e m t

\-opu
ODU- +

i l ?a 1187 3 6 108 4 0 0 I4 Jo
55 275i 1345 3?3 120 581 i 0 31)

5.5 2788 1353 3?3 120 581 19 38
51 2397 1170 291) 108 400 14 30

0 I 1 8 0 0 0 0 0
4 3W 166 4 1 I2 91 5 0

Union I l n r e m r

-
PmO

75.0
80.9

80.9
7S.O

0.0
5.9 -

(by wrcenram of Muimrm)
Exec MI- Calb Do V

s . 0 a . 5 w.4 w.8 I s.1
64.1 71.9 78.2 78.4 77.2

64.4 72.4 78.2 78.4 I 77.2 SS.0 17.5 I
1i.7 , :;; ,

Some interesting observations can be made. T h e 1/0
statements, especially the WRITE statements, are less likely to
be executed than most other statement subclasses. This is rea-
sonable considering the role WRITE statements play in debug-
ging and error condition handling code. Also. as statement
coverage increases. ditlerent statement subclasses are more
likely to be exercised. In table 3 the line labeled “OpU-A”
describes the statements that are executed in operational use
but not in acceptance test. Operational usage exercised 8.4%
of the code that acceptance test never exercised. This 8.4% is
not an even cross section of the statement subclasses. One
would reasonably expect the 8.4% t o be similar for different
statement subclasses but this is not so; as much as 12.1% of
the IF statements and 14.7% of the READ statements are exe-
cuted but only 2.9% of the WRITE statements are executed.

also h a s some significance to software reliability models.
Assuming that statements from diRerent statement subclasses
have diRerent likelihoods of being a “fault.” then this result
seems to imply that a representative reliability model should
have a hazard function (see) that varies over time.
Question:

While this is an interesting result in its own right, this

9

What are the properties of structural coverage growth?
For a set of input cases. structural coverage monotoni-

cally increases with the execution of each new input case
(bound above by the number of reachable statements). This
section examines the growth of structural coverage. I t is
important for two reasons:

(1) It provides a way t o see if two sets of input cases exercise
the program the same way. This provides a way to com-
pare the equivalence of operational use and acceptance
testing.

(2) It provides useful d a t a for the reliability models. hssum-
ing that increased coverage implies a higher failure rate,
then anything we learn about the growth of structural
coverage can be applied to the calculation of the reliabil-
ity models’ hazard functions.
With 17 acceptance tests and 60 operational usage cases.

there are clearly too many sequences to exhaustively examine.
In a personal communication, Dr. hmri t Goel proposed a solu-
tion: examine the structural coverage of a large, but manage-
able number of sequences. Plot 1 shows the structural cover-
age growth of 100 permutations of operational usage with
median, 10th and 90th percentiles superimposed.

3

Plot 1. Structural Coverage of 100 Permutations o l 60
Operational Usage Cases. (median, 10th. and
90th percentiles superimpoaed)

A variety of models were ntted to the structural coverage
growth da ta in an at tempt to learn more about structural cov-
erage growth. A good mathematical model of structural cover-
age growth would provide insight into structural growth.
Models were fitted to the flrst half of a sequence to evaluate
their usefulness as predictors and to the entire sequence to
evaluate their ability to characterize structural coverage
growth. Plots of the residuals were examined visually to esti-
mate goodness of at.

The best fit was obtained using Goel and Okumoto’s
NHPP model 12. T h e NHPP model was originally defined as a
reliability model. Given a history of faults revealed over time.
it can be used to estimate the number of faults to be revealed
by time t. It is being used here as a model of structural cover-
age growth. Restated in terms of structural coverage growth,
the model is:

m(C) = 41-e-u)

where
m(t) is the expected value of the number of statements
executed by test t.
a predicts the expected number of statements t o be exe-
cuted.
b determines the steepness of the curve.

Given 41) through rn(t,,,,), a and h can be calculated. Note

3-49

the following property:
lim m (t) = a
I-m

= erpcc ted statement coverage

It is the best or the models attempted, but its results are
imperfect even when a variety of da ta transformations are
applied. Plots 2-3 show one of the fltted models and its resi-
dual. This remains an area of future research.

i I
. . .

Plot 2. NHPP Model Fitted to the First 20 Values of the
100 Operational Growth Sequences. (residuals)

I .

'

..... . : , . . ,
. .

Plot 3. NHPP Model Fitted to the First 20 Values of the
100 Operational Growth Sequences. (plot of a vs
b)

In summary, we have used structural coverage to provide
insight into how functional acceptance test and operational
usage exercise a program's code: to suggest results that effect
reliability models; to suggest a relationship between procedure
coverage and statement coverage: and to move toward under-
standing statement coverage growth.

C o m p a r i s o n of I n p u t s Using S t r u c t u r a l Coverage
LMetrics

Does functional testing have the same coverage proflle as
operational usage, or more generally. can structural coverage
be used to compare two sets of program inputs? This question
is interesting for two reasons:

(1) Some testing models require input sets that are
"representative*' of operational usage lo. Structural cov-
erage could provide a way of measuring this.
Many reliability models. when using past failure data to
predict failure rate or number of failures, assume that the
past inputs are similar to the present inputs. Structural
coverage could provide a method for conflrming this.

Can the Venn diagram technique be used t o differentiate
input sets?
In an earlier section we compared functional test sets

with operational usage using a Venn diagram technique (tables
2 and 3). We used this to compare how functional tests and
operational usage exercised the program. Could this be
extended t o other input sets? For example, it seems plausible
tha t tests generated with the goal of high branch coverage
would execute different code than tests generated by test
mutation on arithmetic expressions l3 or that boundary value
functional tests would exercise dicerent sections of code than
statistical predictions of operational usage. We hypothesize
tha t the code in the different sections of the Venn diagram
would reRect the properties of the two sets of tests.
Question:

(2)

Question:

Can input sets be differentiated using nonparametric tests
of structural coverage?
Acceptance test and operational usage were statistically

compared using both the Mann-Whitney and KruskaCWalli
tests*. T h e proposed hypotheses were: "For each of the struc-
tural coverage classes (procedures. executable statements,
assignment statemen ts...) the population represented by the 60
operational usage cases is similar to the population represented
by the acceptance test cases."

types except READS. Since there are so few READ state-
ments, a small, random difference in the tests could falsely
manipulate the statistic. The other statement classes are less
susceptible to small changes and represent a better population
to examine.

T h e tests fail to reject the hypotheses that the two popu-
lations are similar. meaning that in this case, operational use
and acceptance test cannot be distinguished by their structural
coverage numbers.
Question:

The tests fail to reject the hypotheses lor all statement

Can the number of executions of prime sections of code
be used to differentiate input sets?
Are statements executed as thoroughly by acceptance test

as they are by operational usage? For each statement in the

~~~ 

8 The Mann-Whitney and Kruskd-Wallis test8 were chosen be- 
cause they are nonparametnc cesw: they make no  asumptions about 
the distnbutions of source populations. T h e  Mann-Whitney test IS 
nost sensitive M dlRerences in "location (central tendency)." The 
I<ruskal-Wallis test is sensitive to differences in "location or dimer- 

. I 1  

3-50 



program, it is possible to  count how many times it w a s  exer- 
cised by a particular acceptance test or operational usage case. 
(In this paper we will distinguish between ezercise and eze- 
cute .  .i statement can be ezecuted many thousands of times 
by 3 single accepcance test. Each acceptance test or opera- 
tional usage case ezerczses the statement once). If acceptance 
test and operational usage are similar, then the percentage of 
acceptance test cases that executed a statement should be 
similar to  the percentage of operational usage cases. 

tion* of code. The  plotted da ta  are shown in scatter plot 4. 
The regression line has slope 0.921 and intercept 0.032. The  r 
square value is 0.863. 

Since the plot does not show any imbalance, one could 
conclude that  acceptance test and operational usage exercise 
the code equally thoroughly. It is a future goal of this research 
to replace this empirical judgement by a statistical test. 

The two percentages were calculated for each prime sec- 

I I I 

I I I I 1 
o a  0.. O b  0 .  I ”  

Plot 4. Comparison of Execution Coverage of Acceptance 
T a t  and Operational Usage. (% Acceptance 
Test on X-axis. % Operational Usage on Y- 
axis.) 

T o  summarize, we proposed three methods for comparing 
sets of program inputs: Venn diagram comparison of executed 
statements, statistical comparison, and thoroughnesl of execu- 
tion of prime sections code. These methods may be able to 
diflerentiate input sets, a result that  would be useful for 
understanding reliability models and some testing strategies. 

Error, Faults, and Failures and Structural Coverage 
The SEL has been collecting d a t a  on software develop- 

ment for eight years ’. Error, fault and failure data  are col- 
lected using the “Change Report Form” or CRF. A CRF is 
filed whenever a change, enhancement or fault repair is made 
to  a subroutine or data  Rle. This study examines three Relds 
of the form, “time to isolate the error,” “the time to under- 

stand and implement.” and the section “type of error*.” 
There were eight faults found during operation. Each 

fault could be repaired by changing code in one procedure. 
One procedure contained two faults. With these data. we can 
address these questions: 
Question: 

Were heavily exercised sections of code more likely to 
contain laults? 
Hair of the procedures were exercised by more than 90% 

of the operational usage cases. About half of the revealed 
faults occurred in this group of procedures (3 of 8). With 
Ghese data  we reject the hypothesis that more heavily exercised 
subroutines are more likely to contain a revealed fault. 
Question: 

Is procedure coverage related to time to  isolate? 
Time to isolate the change seems to be independent of 

procedure coverage. 
Question: 

Is procedure coverage related to  time to  understand and 
implement? 
Increased asage seems ta be associated with ionger time 

to  understand and implement a change. This might be -..,-......-- e, -..a-u.,.+IyI yyow the r r s u u r ~  CAC:~C&U y:1uI;euurea 
contain fairly simple code while the heavily exercised code is. 
by necessity. more complicated and requires more time t o  
modify. 
Question: 

r*nl.inaA h” e..nnnoCi,.r *I.... ,:-I..,-- -..---.- .I > - . - - -  

Is procedure coverage related to  type of error? 
There are too few faults to reveal any interesting pat- 

terns. 
In summary, we have tried to relate procedure coverage 

to: “time t o  isolate an error.” “time to understand an error,” 
and “type of error.” T h e  da ta  begins to suggest a relationship 
between “time to understand an error” and structural cover- 
age. There were too few errors to make any firm statements 
about “time to isolate an error” and “type of error.” This  
remains a promising area of study. 

Structural Coverage and t h e  Management of 
Acceptance Tests 

Combined with failure data, structural coverage could aid 
the design of acceptance tests. Imagine a manager in charge of 
designing acceptance tests for a group of similar projects or for 
various releases of a single project. With the failure d a t a  from 
the previous project or release and the structural coverage of 
both the acceptance and operational usage cases he can sug- 
gest new acceptance tests for the next release. He could 
require tests to exercise previously unexercised sections of code. 
He could require new acceptance tests t o  explain the code 
missed by acceptance test but exercised in operational usage. 
If he is using a testing methodology or reliability model that  
requires inputs that  are representative of operational usage, he 

* Prime sectlons of code are seguences of executable statementd 
thac contain no statements that alter the Row of control. Thus if 
control reaches the Bnt statement of a prime sectlon. all the scate- 
menu will be executed (barring run-time erron or interrupw). 

3-51 

Time to isolate the error is classitled as caking: less than one 
hour. one hour to one day, greacer than one day. never found. Time 
to undentand and implement the change is cldsslRed as taking: less 
than one hour. one hour to one day. one day to three days. or greater 
than three days. Faults are categorized as originating in the: require- 
ments. functional veciRcnr.ion. d n i r n  (Pither involvinz I n t , n  or ex- 



can use these data  to select more representative tests. 

an iterative fashion: 
We see structural coverage being used by a manager in 

Gather structural coverage d a t a  on acceptance tests and 
release the project. 
Gather structural coverage d a t a  and failure da ta  on 
operational usage. Use these d a t a  to  adjust reliability 
models. 
Use structural coverage data  to: suggest new tests and 
evaluate how the old testa were created. 
Restart the cycle with the new acceptance tests. 

Conclueions and Criticierna 
We conclude: 

(1) We may be able to compare sets of inputs using statisti- 
cal tests and Venn diagram techniques. This would be 
useful for examining some testing methods and reliability 
mode Is. 
The structural coverage growth of different statement 
subclasses grows a t  different rates. This insight might be 
or interest to reliability model developers. 

(2) 

T h e  da ta  seem to imply: 
Faults are independent of the number of executions. We 
can (in our environment) reject the hypothesh tha t  
heavily exercised procedures are more likely to  contain 
more revealed faults. 
Procedure coverage may be used instead of statement 
coverage. 
Structural coverage metrics can be used to aid in the 
management of the  acceptance test process. 
This study can be criticized on a number of points: 
There are too few faults to make any forceful statements 
about erron. faults, failures and structural coverage. 
(But then again we cannot fault NASA/GSFC for having 
programs with too few faults.) 
While the data suggests that  i t  may be pceaible to 
differentiate test sets using structural coverage, we have 
never provided an example tha t  shows tha t  it can! 
Because the data  waa unavailable, this study d a s  not 
address the order in which the  functional tests were used, 
the order of the operational usage cases or which opera- 
tional usage cases revealed the faults. 
The  study dld not  produce a good model of structural 
coverage growth. 
These points will be addressed when the study is repli- 

cated in the summer of 1985. The  program being studied is 
DERBY 15, a large (300 routines, -50k source lines of code), 
satellite simulator. The  new project is larger and should have 
more faults. With the new project, we will gather more 
thorough information on the order of system tests, acceptance 
tests. and operational usage cases, plus the exact input that  
reveals a failure. The results of this new study should answer 
many of the questions raised by this s tudy.  

Acknowledgmcnta 
We would like to  thank Frank McGarry, NASA/Goddard 

Space Flight Center. Dr. Gerald Page, Computer Sciences Cor- 
poration. and Dr. Amrit Goel. of Syracuse University, for their 

help in-the production of this paper. Dr. David Hutchens. of 
Clemson University. for a clear-eyed review. and the Univer- 
sity of Maryland's Software Engineering group for providing a 
fertile intellectual environment. We would also like to thank 
the reviewers for providing many useful comments. 

References  
SEL repor- can be obtained from: Frank McGarry. Code 582.1. 

Room E231. Building 23. NASNGoddard Space Fllght Center. 
Greenbelt. Maryland. 20771. USA. University of Maryland Technical 
Reporw are available from the authon. 

The Software Engineering Laboratory. SEL-81-104, Software 
Engineering Laboratory Series. February 1982. 

Acceptance Test Methods. I?II-78/6?96. Computer Sciences 
Corporation. October 1978. 

IEEE Standard Glossary of Software Engineering Terminole 
gy, IEEE Std 7?9-1983. IEEE h e . .  February 1983. 

Gulde to Data Collection. SEL-81-101. Software Engineering 
Laboratory Series, August 1982. 

Joe W. Duran and John J. Wlorkowskl, Quantifying software 
valldlty by sampling. IEEE Transactions o n  Reliability 
R29. 2 .  pp. 141-144. June 1980. 

M. Dyer and Harlan D. Mls. Developing electronic System 
with certitlable reliability. Proceedings o/ the Con/erence 
on Electronic Systems Efectiveness and Lifc Cycle Cost- 
ing. NATO Advanced Study Series, Springer-Verlag. 
Summer 1982. 

W. D. Brooks and R. W. Motley, Analysls of Discrete 
Software Reliability Models. RADC TR 80-84. RADC, 
April 1980. 

William E. Howden. A Survey of Dynamic Analysis Methods, 
Tutorial: So/twarc Testing 8 Validation Techniques, 2nd 
Ed., ed. E. Miller and W. E. Howden. pp. 209.231, 1981. 

G. J. Myers, The Art o/Sof(ware Testing, John W h y  t 
Sons. New York. 1979. 

J. R. Brown and M. Llpow, Testing for software reliability. 
Proceedings of the International Con/erence on Reliable 
So/trare. L a  Angela. CA. pp. 518-527. April 1975. 

Joe W. Duran and John J. Wiorkowski. Towards models for 
probabilistic program correctness. Proceedings of the 
ACM Software Quality Asdurance Workshop. pp. 39-44. 
1978. 

Amrit L. Goel and K. Okumoto. A Time Dependent Error 
Detection Rate Model for Software Performance Assess- 
ment with Applications. annual report to W C .  Depart 
ment of Industrial Engineering and Operations Research, 
Syracuse University. Syracuse. New York. March 1980. 

Richard A. DeMilio. Richard J. Lipton. and Frederick G. 
Sayward. Hinw on test data selection: Help lor the p m -  
ticing programmer, Computer, pp. 34-41. .ipril 1978. 

Sidney Siegel. lVonparametrie Slatistics for the Behavioral 
Sciences, McGraw-HI11 Book Company, Inc.. New York. 
1956. 

ERBS Dynamics Simulator User's Guide and System DescriP- 
Cion, SD-83/6044. Computer Sciences Corporation. August 
1983. 

3-52 



:16] Vlcmr R.  Basill and David .M. Weis. A Methodology for Col- 
lecting Valid Software Engineering Data. TR-1235. Com- 
puter Science Technical Repon Series. December 1882. 

;Ii! Joe W. Duran and Simon Ntafos. A report on random t e s t  
ing. Proceedings o j  the Fqth International Conjerencc on 
Sojtwarc Engineering. pp. liC183. March 1981. 

(181 .4mrit L. G a l .  Software error detectlon model with applicb 
tiom. Journal of Syrtemr and So/twarc 1. 3. pp. 243-248. 
1980. 

!19! John B. Goodenough and Susan L. Gerhan. Toward a theory 
of test data selection. IEEE Transactionr on Sojtwarc En- 
gineering. pp. 156.173, June 1975. 

(201 John D. Musa. Software reliability measurement, Journal of 
System and Sortware 1. 3. pp. 223-241, 1980. 

3-53 


